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Introduction

Collaborative Filtering
Rating matrix Y = [yij ] ∈ Rm×n, with missing values
Predict yij for given user-item pairs, matrix completion task

Netflix prize competition, about 480,000 users and 18,000 movie
items, 100 million ratings

Our team: HAT, “Have a Try”.
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CF via Matrix Factorization

Low dimensional linear factor model [Hofmann, 2004], it assumes
that only a small number of factors can influence the ratings. In a
k -factor model

Y ≈ UV

where U ∈ Rm×k and V ∈ Rk×n.
For each user-item pair, we have,

yij =
k∑

l=1

uilvjl = u>i vj

User i is modeled by ui ∈ Rk , while item j is modeled by vj ∈ Rk .
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Three MF Methods

RMF, Regularized Matrix Factorization.

MMMF, Maximum Margin Matrix Factorization.

NMF, Non-negative Matrix Factorization.
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RMF

Goal: find U ∈ Rm×k , V ∈ Rk×n, such that u>i vj ≈ yij ,
ij ∈ S = {ij | yij > 0}.

Objective function:

min
U∈Rm×k ,V∈Rn×k

λ

2
(‖U‖2

F + ‖V‖2
F ) +

∑
ij∈S

(yij − u>i vj)
2

where λ > 0 and ‖U‖2
F =

∑
pq u2

pq .
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MMMF

Basic idea:
factor matrices U ∈ Rm×k , V ∈ Rk×n

r − 1 thresholds θi1, . . . , θi,r−1 for each user i

θia > u>i vj if a >= yij
θia < u>i vj if a < yij

r = 5, then yij = 3 ⇔ θi1, θi2 < u>i vj < θi3, θi4
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MMMF

Objective function [Rennie & Srebro, 2005, DeCoste, 2006]:

J(U, V,θ) =
λ

2
(‖U‖2

F + ‖V‖2
F ) +

r−1∑
a=1

∑
ij∈S

h(T a
ij [θia − u>i vj ])

where

T a
ij =

{
+1 if a ≥ yij
−1 if a < yij

h(·) is a smoothed hinge loss function:

h(z) =


1
2 − z if z < 0
0 if z > 1
1
2 (1 − z)2 otherwise
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Hinge Loss and Smoothed Hinge Loss

Figure: Hinge loss and smoothed hinge loss
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NMF

Goal: find non-negative matrices U ∈ Rm×k and V ∈ Rk×n, such
that Y ≈ UV.

Measure of divergence [Lee & Seung, 2000]:

D(A||B) =
∑

ij

(aij log
aij

bij
− aij + bij)

similar to Kullback-Leible divergence.

To perform NMF, we need to minimize D(Y||UV) with respect to
U and V, subject to the constraints uil , vjl ≥ 0
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MF Ensembles

Two possible approaches:
Picking up the ”best” one:

one particular MF algorithm
using one single set of optimal parameters

Ensemble learning approach, combine the results obtained with
different MF algorithms: RMF, MMMF, NMF
different parameters for each MF algorithm: dimensionality,
learning rate, regularization parameter, etc.

Ensemble approach has been used for CF in [DeCoste, 2006].
Detailed analysis of ensemble learning methods can be found in
[Dietterich, 2002].
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Experimental Results

Figure: RMSE of our 16 submissions on the quiz dataset.
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Summary

MF is an effective approach for CF.
Three current MF approaches: RMF, MMMF and NMF.
Using ensemble approach to improve the performance.
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